Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

Dumptruck Problem

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

January 9, 2016

Supervision by Prof.Neville Fowekes Arzag N

3

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

Dumptruck Problem

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

January 9, 2016

Supervision by Prof.Neville Fowekes Arzag N

3

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Problem Statement:

Problem

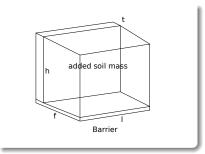
Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

Enormous dump trucks (5 m high) are used to move soil/rocks from vast open cut mines (for example the gold mine Superpit in Kalgoorlie WA). Typical loads 500 tons, Typical Speeds 15-20 km/hr. The trucks remove much waste and small amount of valuable material from the mine. Drivers drive long hours along narrow roads. Should they drop off the edge; disaster!

Aim and model outlines

Supervision by Prof.Neville Fowekes


Arzag Nour (arzag@aims.ac.za)

Our aim is: Design a barrier for safety.

Think! Which barrier characteristics are required To achieve safety?

The model outlines:

- The factors which will affect on the interaction between the dump truck and the barrier.
- The required structure for the soil behind the barrier.

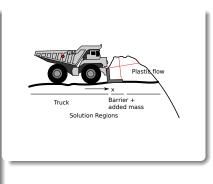
3 → 4 3

System equation and tasks I

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

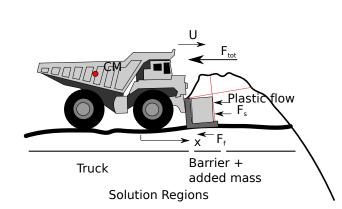
Dump Truck Equation:


Main mathematical task: Determine the stopping distance x_s (barrier and pile geometry, initial truck speed, loading).

 $M\ddot{x} = -F_{tot}$

By integration with respect to x we will end with.

$$x_s = \frac{M{U_o}^2}{2F_{tot}}$$


where M is the mass of the truck and U_o is the initial velocity.

System equation and tasks II

Arzag Nour (arzag@aims.ac.za)

Barrier and pile equation:

3

Supervision by Prof.Neville Fowekes

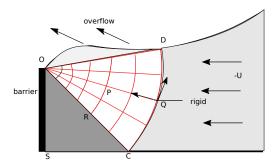
Arzag Nour (arzag@aims.ac.za

Task : Analysis F_{tot}

Fractional force:

- The force outing from the friction between the mass of the barrier and the add soil mass with the ground.
- $F_f = \mu(m_b + m_a)g$, μ is the frictional coefficient.

Soil Force


- The normal force acting on the barrier.
- $F_s = 2h(S_{max} + \sigma_1)$ with $\sigma_1 = \rho_s gh/2$.
- *S_{max}* is the maximum shear stress that the soil can take before yielding.
- h is the soil height and σ₁ is the gravitational pressure per unit area on the face of barrier.
- Given by the plasticity flow theory.

Plastic Flow theory

Supervision by Prof.Neville Fowekes

Studying the plastic flow of the soil

Arzag Nour (arzag@aims.ac.za)

3

Typical result

Dumptruck Problem

Supervision by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

. .

 \sim

.

H=2 m and
$$\rho_s = 1000 Kg/m^3$$

 Full Truck

 $U_o \text{ Km/hr}$
 $x_s \text{ m}$

 15
 5.6

 20
 9

 20
 3.98

 15
 0.75

3

1

100011

3

<ロ> (日) (日) (日) (日) (日)

Conclusion

Problem Supervision

by Prof.Neville Fowekes

Arzag Nour (arzag@aims.ac.za)

> we know that: $x_s = \frac{MU_o^2}{2F_{tot}}$ From this relation we can say :

- x_s is directly proportional to the mass of the truck and the square of the initial velocity.
- x_s is directly proportional to ¹/_{Ftot} and the important factor really affect on this relation the density of soil and shear maximum stress.

(日) (同) (日) (日)